Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Eur J Neurol ; 30(4): 1059-1068, 2023 04.
Article in English | MEDLINE | ID: covidwho-2281435

ABSTRACT

BACKGROUND AND PURPOSE: Tremor in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is underrecognized, and the pathophysiology remains incompletely understood. This study evaluated tremor in CIDP and tested the hypothesis, established in other demyelinating neuropathies, that tremor occurs due to mistimed peripheral inputs affecting central motor processing. Additionally, the tremor stability index (TSI) was calculated with the hypothesis that CIDP-related tremor is more variable than other tremor disorders. METHODS: Consecutive patients with typical CIDP were prospectively recruited from neuromuscular clinics. Alternative causes of neuropathy and tremor were excluded. Cross-sectional clinical assessment and extensive tremor study recordings were undertaken. Pearson correlation coefficient was used to compare nerve conduction studies and tremor characteristics, and t-test was used for comparisons between groups. RESULTS: Twenty-four patients with CIDP were included. Upper limb postural and action tremor was present in 66% and was mild according to the Essential Tremor Rating Assessment Scale. Tremor did not significantly impact disability. Surface electromyography (EMG) found high-frequency spectral peaks in deltoid (13.73 ± 0.66 Hz), biceps brachii (11.82 ± 0.91 Hz), and extensor carpi radialis (11.87 ± 0.91 Hz) muscles, with lower peaks in abductor pollicis brevis EMG (6.07 ± 0.45 Hz) and index finger accelerometry (6.53 ± 0.42 Hz). Tremor was unchanged by weight loading but correlated with ulnar nerve F-wave latency and median nerve sensory amplitude. TSI (2.3 ± 0.1) was significantly higher than essential tremor. CONCLUSIONS: Postural tremor is a common feature in CIDP. Tremor was unaffected by weight loading, typical of centrally generated tremors, although there was a correlation with peripheral nerve abnormalities. The high beat-to-beat variability on TSI and gradation of peak frequencies further suggest a complex pathophysiology. These findings may assist clinicians with the diagnosis of neuropathic tremor.


Subject(s)
Essential Tremor , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating , Humans , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/diagnosis , Tremor , Cross-Sectional Studies , Muscle, Skeletal/pathology , Phenotype , Neural Conduction/physiology
2.
Int J Mol Sci ; 24(5)2023 Feb 27.
Article in English | MEDLINE | ID: covidwho-2251968

ABSTRACT

Demyelinating diseases are a group of pathologies characterized by the alteration of myelin-that is, the coating that wraps around most of the nerve fibres of the central and peripheral nervous system, whose goal is the improvement of nerve conduction and the preservation of energy spent during action potential propagation [...].


Subject(s)
Demyelinating Diseases , Humans , Demyelinating Diseases/pathology , Myelin Sheath/pathology , Neural Conduction/physiology , Action Potentials
3.
J Neurophysiol ; 129(1): 191-198, 2023 01 01.
Article in English | MEDLINE | ID: covidwho-2214081

ABSTRACT

Neurological manifestations associated with Coronavirus Disease-2019 (COVID-19) are commonly reported, but patients were not referred to perform the electrophysiological assessment. We aimed to review the existing literature on clinical studies on COVID-19 peripheral neuropathy to correlate patients' symptoms and characteristics with nerve conduction studies/electromyography (NCS/EMG) outcomes. This protocol is registered in the Open Science Framework (https://www.doi.org/10.17605/OSF.IO/ZF4PK). The systematic search included PubMed, ScienceDirect, and Google Scholar, for articles published from December 2019 to March 2022. A total of 727 articles were collected, and according to our inclusion and exclusion criteria, only 6 articles were included. Of 195 participants, only 175 underwent NCS/EMG assessment. Of these, 44 participants (25.1%) had abnormal EMG, 54 participants (30.8%) had abnormal motor NCS, and only 7 participants (4%) had abnormal sensory NCS. All cases presented with myopathy, while a limited number of cases presented with polyneuropathy. According to motor NCS and EMG, the most affected nerves were the tibial and peroneal in the lower extremities and the ulnar nerve in the upper extremities. Interestingly, the median nerve was reported to be associated with the severity and the rate of motor recovery of patients with COVID-19. COVID-19 generates a demyelinating motor neuropathy and myopathy. Clinicians are encouraged to refer patients with COVID-19 presenting with neurological symptoms to be assessed by electrophysiological methods to objectively determine the nature of their symptoms, follow their prognosis, and plan their rehabilitation.


Subject(s)
COVID-19 , Muscular Diseases , Peripheral Nervous System Diseases , Polyneuropathies , Humans , Neural Conduction/physiology , Polyneuropathies/diagnosis , Electromyography , Muscular Diseases/etiology
4.
Neurosciences (Riyadh) ; 28(1): 57-61, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2204424

ABSTRACT

Guillain-Barré syndrome (GBS) has several clinical variants. The sensory presentations of GBS are atypical but well-recognized. We report a patient who presented with predominantly sensory symptoms associated with reversible conduction failure (RCF). RCF is a well-defined neurophysiological abnormality noted mainly in axonal GBS and may be misinterpreted as evidence of demyelination. A 25-year-old woman presented 2 weeks after a coronavirus 2019 infection with acute sensory symptoms, distal allodynia, mild weakness, and mild hyporeflexia in her upper limbs. A nerve conduction study (NCS) showed delayed motor distal latencies, and lumbar puncture confirmed cytoalbuminologic dissociation. After excluding other etiologies, she was diagnosed with GBS, treated with an IV immunoglobulin course, and showed remarkable recovery. Results of a repeat NCS were consistent with RCF and confirmed the presence of axonal GBS. Increased awareness of sensory GBS and RCF is expected to improve the diagnosis and management of atypical GBS presentations.


Subject(s)
COVID-19 , Guillain-Barre Syndrome , Humans , Female , Adult , Guillain-Barre Syndrome/complications , Guillain-Barre Syndrome/diagnosis , Neural Conduction/physiology , COVID-19/complications , Immunoglobulins, Intravenous/therapeutic use , Electrodiagnosis
5.
J Neurophysiol ; 129(2): 392-398, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2162034

ABSTRACT

Various neurological manifestations are observed in about 36.4% of patients infected with SARS-CoV-2 and post-COVID neuropathy is one of them. There is lack of studies describing neurophysiological abnormalities in peripheral nerves in case of patients who had SARS-CoV-2 infection. The aim of this study was to analyze the changes in peripheral nervous system in case of COVID-19 survivors. In the presented study, 45 COVID-19 survivors who had nerve conduction study (NCS) were involved. Results were compared with control group consisting of healthy patients who had nerve conduction study before the COVID-19 pandemic. In our study group, neurophysiological abnormalities were present in the case of both sensory and motor nerve fibers. The most significant reduction of NCS parameters was observed in the case of sensory action potential amplitude of sural nerve. Moreover, that correlation was the most significant in the case of amplitude and conduction velocity in sensory and motor neuron fibers both in arms and legs. Those abnormalities were observed even 6 mo after COVID-19. Further investigation needs to be done regarding the polyneuropathies associated with human coronaviruses, and we should answer the question whether the virus directly damages peripheral nerves or factors mediating inflammatory response are responsible for the neural damage.NEW & NOTEWORTHY Various neurological manifestations are observed in about 36.4% of patients infected with SARS-CoV-2 and post-COVID neuropathy is one of them. There is lack of studies describing neurophysiological abnormalities in peripheral nerves in case of patients who had SARS-CoV-2 infection. The aim of this study was to analyze changes in peripheral nervous system in case of COVID-19 survivors.


Subject(s)
COVID-19 , Peripheral Nervous System Diseases , Humans , Pandemics , Neural Conduction/physiology , Electromyography , COVID-19/complications , SARS-CoV-2 , Peripheral Nerves , Peripheral Nervous System Diseases/etiology
8.
J Peripher Nerv Syst ; 27(4): 325-329, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1990263

ABSTRACT

Small fiber neuropathy usually presents with gradual and progressive chronic length-dependent pain. Acute small fiber neuropathy is rarely reported. Three patients with acute onset neuropathic pain after Oxford-AstraZeneca ChAdOx1-S vaccination are described. Two patients were identified at the Oxford University NHS Foundation Trust, Oxford, UK and one patient in Red de Salud UC Christus, Santiago, Chile. All patients underwent a clinical assessment that included a detailed neurological examination, laboratory investigations, nerve conduction studies, thermal threshold testing, and skin biopsy for intra-epidermal nerve fiber density. Patients seen in Oxford underwent MRI of the brain and spinal cord. Cerebrospinal analysis was not performed. Neuropathic symptoms (burning pain, dysaesthesias) developed in the hands and feet within 2 weeks of vaccination. On clinical examination, there was pinprick and thermal hyposensitivity in the area of neuropathic pain. Laboratory investigation, nerve conduction tests, sympathetic skin responses, and MRI showed no relevant abnormalities. Thermal thresholds were abnormal and intra-epidermal nerve fiber density in the lower leg was reduced. In two cases symptoms persist after several months. Three cases of definite acute small fiber neuropathy after Oxford-AstraZeneca ChAdOx1-S vaccination are described. At follow up, neuropathic pain was present in two of the patients.


Subject(s)
Neuralgia , Small Fiber Neuropathy , Humans , Small Fiber Neuropathy/chemically induced , Small Fiber Neuropathy/diagnosis , Small Fiber Neuropathy/pathology , Neural Conduction/physiology , Neuralgia/chemically induced , Neuralgia/pathology , Neurologic Examination , Skin/pathology , Vaccination/adverse effects
10.
Neurol Sci ; 43(4): 2285-2293, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1739338

ABSTRACT

OBJECTIVE: COVID-19 infection is associated with peripheral neuropathy. However, subclinical neurological involvement may occur anytime, and diagnostic methods that reveal this subclinical involvement are not well established. We aimed to assess the subclinical neurological involvement by visual evoked potential (VEP) measurements and nerve conduction studies (NCS) and explore the relationship between neurological electrophysiological findings and the severity of COVID-19 infection. METHODS: Seventy-six patients recovered from COVID-19 infection, and 44 healthy controls were enrolled in the study. Patients were assessed for clinical and demographic parameters. NCS and VEP analyses were performed to detect any peripheral neuropathy or optic neuropathy in both groups. RESULTS: None of the COVID-19 patients had electrophysiological evidence of peripheral neuropathy. However, patients with COVID-19 pneumonia had significant abnormalities in several peripheral nerve measurements compared to patients without pneumonia. Although P100 parameters did not differ significantly between patients and controls, 12 patients with COVID-19 had prolonged P100 latencies. CONCLUSIONS: We detected subclinical afferent visual pathway abnormality evaluated by VEP analysis. In addition, we found subtle electrophysiological features in the NCS of the patients presented with COVID-19 pneumonia. However, our findings did not fortify the diagnosis of peripheral neuropathy or optic neuropathy. Further studies are needed to determine the characteristics of COVID-19-related peripheral neuropathy/optic neuropathy whether it has distinct clinical features and disease course.


Subject(s)
COVID-19 , Optic Nerve Diseases , COVID-19/complications , Evoked Potentials, Visual , Humans , Neural Conduction/physiology , SARS-CoV-2
11.
Brain Behav ; 12(2): e2493, 2022 02.
Article in English | MEDLINE | ID: covidwho-1709338

ABSTRACT

BACKGROUND: Carpal tunnel syndrome (CTS) is a common entrapment neuropathy of the median nerve at the wrist which causes severe symptoms. However, psychological aspects can affect patients' perception of this pain and can cause similar pain in some instances. This study aims to determine the association between symptoms severity, functional status, and nerve conduction studies (NCS) of adult patients with CTS and their anger, anxiety, and depression status. METHODS: This case-control study was conducted in clinics in Damascus, Syria. Controls were frequency matched by gender and age from a general clinic. Interviews based on questionnaires were used that included the Boston Carpal Tunnel Questionnaire (BCTQ-A), Hospital Anxiety and Depression Scale (HADS), Dimensions of Anger Reactions Scale-5 (DAR-5), and NCS. RESULTS: Overall, 242 patients (121 cases) were included in this study. Cases with CTS had significantly higher anxiety and depression when compared to controls, but not higher anger. Cases with higher anxiety, depression, and anger had significantly more CTS symptoms and less functional status. Anxiety was also higher in cases with normal NCS in the case group. When using regression, anxiety and depression remained significantly associated with having CTS. CONCLUSION: Anxiety and depression are more prominent with CTS. Furthermore, having anxiety and depression were associated with more CTS symptoms in the hand. Having anger was also associated with more CTS symptoms among cases. These findings emphasize the importance of psychological aspects when having hand pain or CTS symptoms as these patients might have these symptoms despite having normal NCS.


Subject(s)
Carpal Tunnel Syndrome , Psychological Distress , Adult , Carpal Tunnel Syndrome/complications , Case-Control Studies , Humans , Median Nerve , Neural Conduction/physiology , Pain/psychology , Syria
12.
Eur J Neurol ; 28(11): 3768-3773, 2021 11.
Article in English | MEDLINE | ID: covidwho-1666304

ABSTRACT

BACKGROUND AND PURPOSE: In its initial stages, Guillain-Barré syndrome (GBS) is difficult to identify, because diagnostic criteria may not always be fulfilled. With this retrospective study, we wanted to identify the most common electrophysiological abnormalities seen on neurophysiological examination of GBS patients and its variants in the early phases. METHODS: We reviewed the clinical records of patients admitted to our Neurology Unit with a confirmed diagnosis of GBS. The study sample was divided in two subgroups according to whether the neurophysiological examination was performed: within 7 days (very early group) or within 7-15 days (early group). H reflex, F waves, and motor and sensory conduction parameters were judged abnormal if they were outside the normal range for at least two nerves. We evaluated neurophysiological findings in Miller-Fisher syndrome (MFS) separately. RESULTS: The study sample comprised 36 patients. In GBS, the most frequent abnormal neurophysiological parameter was the bilateral absence of the H reflex, followed by F wave abnormalities. Motor conduction parameters were altered in less than 50% of patients, and even less common were sensory nerve action potential reduction and the "sural-sparing" pattern. In MFS, H reflex was absent bilaterally in 100% of patients, followed by a predominant peripheral sensory involvement, whereas motor conduction parameters were frequently normal. CONCLUSIONS: Bilateral absence of the H reflex is the most sensitive parameter in early diagnosis of GBS and its variants.


Subject(s)
Guillain-Barre Syndrome , Miller Fisher Syndrome , Guillain-Barre Syndrome/diagnosis , Heart Rate , Humans , Neural Conduction , Neurophysiology , Retrospective Studies
13.
Nutrients ; 13(11)2021 Oct 25.
Article in English | MEDLINE | ID: covidwho-1547463

ABSTRACT

Diabetic peripheral neuropathy (DPN) is the most common microvascular complication of diabetes that affects approximately half of the diabetic population. Up to 53% of DPN patients experience neuropathic pain, which leads to a reduction in the quality of life and work productivity. Tocotrienols have been shown to possess antioxidant, anti-inflammatory, and neuroprotective properties in preclinical and clinical studies. This study aimed to investigate the effects of tocotrienol-rich vitamin E (Tocovid SuprabioTM) on nerve conduction parameters and serum biomarkers among patients with type 2 diabetes mellitus (T2DM). A total of 88 patients were randomized to receive 200 mg of Tocovid twice daily, or a matching placebo for 12 months. Fasting blood samples were collected for measurements of HbA1c, renal profile, lipid profile, and biomarkers. A nerve conduction study (NCS) was performed on all patients at baseline and subsequently at 2, 6, 12 months. Patients were reassessed after 6 months of washout. After 12 months of supplementation, patients in the Tocovid group exhibited highly significant improvements in conduction velocity (CV) of both median and sural sensory nerves as compared to those in the placebo group. The between-intervention-group differences (treatment effects) in CV were 1.60 m/s (95% CI: 0.70, 2.40) for the median nerve and 2.10 m/s (95% CI: 1.50, 2.90) for the sural nerve. A significant difference in peak velocity (PV) was also observed in the sural nerve (2.10 m/s; 95% CI: 1.00, 3.20) after 12 months. Significant improvements in CV were only observed up to 6 months in the tibial motor nerve, 1.30 m/s (95% CI: 0.60, 2.20). There were no significant changes in serum biomarkers, transforming growth factor beta-1 (TGFß-1), or vascular endothelial growth factor A (VEGF-A). After 6 months of washout, there were no significant differences from baseline between groups in nerve conduction parameters of all three nerves. Tocovid at 400 mg/day significantly improve tibial motor nerve CV up to 6 months, but median and sural sensory nerve CV in up to 12 months of supplementation. All improvements diminished after 6 months of washout.


Subject(s)
Diabetic Neuropathies/therapy , Dietary Supplements , Neural Conduction/drug effects , Tocotrienols/administration & dosage , Vitamin E/administration & dosage , Aged , Biomarkers/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/physiopathology , Diabetic Neuropathies/etiology , Diabetic Neuropathies/physiopathology , Double-Blind Method , Female , Humans , Male , Median Nerve/drug effects , Middle Aged , Motor Neurons/drug effects , Sural Nerve/drug effects , Tibia/innervation , Transforming Growth Factor beta1/blood , Treatment Outcome , Vascular Endothelial Growth Factor A/blood
15.
Neurol Sci ; 42(12): 4893-4898, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1391890

ABSTRACT

INTRODUCTION: Neurological complications of SARS-CoV-2 disease have received growing attention, but only few studies have described to date clinical and neurophysiological findings in COVID patients during their stay in intensive care units (ICUs). Here, we neurophysiologically assessed the presence of either critical illness neuropathy (CIP) or myopathy (CIM) in ICU patients. MATERIALS AND METHODS: Patients underwent a neurophysiological assessment, including bilateral examination of the median, ulnar, deep peroneal and tibial motor nerves and of the median, ulnar, radial and sural sensory nerves. Needle electromyography (EMG) was performed for both distal and proximal muscles of the lower and upper limbs. In order to differentiate CIP from CIM, Direct Muscle Stimulation (DMS) was applied either to the deltoid or tibialis anterior muscles. Peak to peak amplitudes and onset latencies of the responses evoked by DMS (DMSamp, DMSlat) or by motor nerve stimulation (MNSamp, MNSlat) were compared. The ratio MNSamp to DMSamp (NMR) and the MNSlat to DMSlat difference (NMD: MNSlat - DMSlat) were also evaluated. RESULTS: Nerve conduction studies showed a sensory-motor polyneuropathy with axonal neurogenic pattern, as confirmed by needle EMG. Both MNSamp and NMR were significantly reduced when compared to controls (p < 0.0001), whereas MNSlat and NMD were markedly increased (p = 0.0049). CONCLUSIONS: We have described COVID patients in the ICU with critical illness neuropathy (CIP). COVID-related CIP could have implications for the functional recovery and rehabilitation strategies.


Subject(s)
COVID-19 , Muscular Diseases , Polyneuropathies , Critical Illness , Electromyography , Humans , Neural Conduction , Polyneuropathies/complications , SARS-CoV-2
18.
J Clin Neuromuscul Dis ; 23(1): 24-30, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1371756

ABSTRACT

OBJECTIVES: COVID-19 is a novel coronavirus that emerged in 2019 and is responsible for a global pandemic. Numerous neurologic manifestations have been described in the literature regarding COVID-19, but most studies are focused on the central nervous system. The authors have noted an association between prior COVID-19 infection and the development of a systemic neuropathy that manifests with asymmetric sensorimotor loss in the peripheral nervous system. We describe 4 cases of mononeuropathy multiplex that were diagnosed after COVID-19 infection. METHODS: All patients included were treated for severe COVID-19 infection at New York Presbyterian Hospital and subsequently referred to the Columbia Peripheral Neuropathy Center for persistent neuropathy. RESULTS: Patient history, COVID-19 disease course, and mononeuropathy multiplex diagnostic evaluation of the 4 patients are recounted. CONCLUSIONS: We postulate a connection between COVID-19 and the development of mononeuropathy multiplex with implications in prognostication, rehabilitation strategies, and future treatments.


Subject(s)
COVID-19/complications , Mononeuropathies/etiology , Aged , Diabetes Mellitus, Type 2/complications , Electrodiagnosis , Electromyography , Female , Humans , Hypertension , Male , Middle Aged , Mononeuropathies/diagnosis , Neural Conduction , Neurologic Examination , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Retrospective Studies
19.
Muscle Nerve ; 64(3): 361-364, 2021 09.
Article in English | MEDLINE | ID: covidwho-1363719

ABSTRACT

INTRODUCTION/AIMS: The initial surge of the coronavirus disease-2019 (COVID-19) pandemic in early 2020 led to widespread cancellation of elective medical procedures in the United States, including nonurgent outpatient and inpatient electrodiagnostic (EDx) studies. As certain regions later showed a downtrend in daily new cases, EDx laboratories have reopened under the guidance of the American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM). In our reopening experience guided by the AANEM, we measured relevant outcomes to determine further workflow adaptations. We aimed to detail our experience and share the lessons learned. METHODS: We reviewed the clinical volumes, billing data, diagnosis distributions, and rates of COVID-19 exposure and transmission among patients and staff in our EDx laboratory during the first 6 months of reopening, starting on June 1, 2020. For context, we detailed the recent AANEM guidelines we adopted at our laboratory, supplemented by other consensus statements. RESULTS: We completed 816 outpatient studies from June 1 to December 1, 2020, reaching 97% of the total volume and 97% of total billing compared with the same time period in 2019. The average relative value units per study were similar. There were no major shifts in diagnosis distributions. We completed 10 of 12 requested inpatient studies during this period. There were no known COVID-19 transmissions between patients and staff. DISCUSSION: Our experience suggests that it is possible to safely operate an EDx laboratory under the guidance of the AANEM and other experts, with clinical volume and billing rates comparable to pre-pandemic baselines.


Subject(s)
Academic Medical Centers/standards , COVID-19/prevention & control , Electrodiagnosis/standards , Neural Conduction/physiology , Workflow , Academic Medical Centers/methods , Academic Medical Centers/trends , COVID-19/epidemiology , Electrodiagnosis/methods , Electrodiagnosis/trends , Humans , Time Factors
20.
J Med Virol ; 93(9): 5432-5437, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1363681

ABSTRACT

This case series describes three patients affected by severe acute respiratory syndrome coronavirus 2, who developed polyradiculoneuritis as a probable neurological complication of coronavirus disease 2019 (COVID-19). A diagnosis of Guillain Barré syndrome was made on the basis of clinical symptoms, cerebrospinal fluid analysis, and electroneurography. In all of them, the therapeutic approach included the administration of intravenous immunoglobulin (0.4 gr/kg for 5 days), which resulted in the improvement of neurological symptoms. Clinical neurophysiology revealed the presence of conduction block, absence of F waves, and in two cases, a significant decrease in amplitude of compound motor action potential cMAP. Due to the potential role of inflammation on symptoms development and prognosis, interleukin-6 (IL-6) and IL-8 levels were measured in serum and cerebrospinal fluid during the acute phase, while only serum was tested after recovery. Both IL-6 and IL-8 were found increased during the acute phase, both in the serum and cerebrospinal fluid, whereas 4 months after admission (at complete recovery), only IL-8 remained elevated in the serum. These results confirm the inflammatory response that might be linked to peripheral nervous system complications and encourage the use of IL-6 and IL-8 as prognostic biomarkers in COVID-19.


Subject(s)
COVID-19/complications , Guillain-Barre Syndrome/complications , Interleukin-6/cerebrospinal fluid , Interleukin-8/cerebrospinal fluid , Respiratory Insufficiency/complications , SARS-CoV-2/pathogenicity , Action Potentials/drug effects , Acute Disease , Aged , Anti-Bacterial Agents/therapeutic use , Biomarkers/blood , Biomarkers/cerebrospinal fluid , COVID-19/cerebrospinal fluid , COVID-19/virology , Convalescence , Darunavir/therapeutic use , Drug Combinations , Guillain-Barre Syndrome/cerebrospinal fluid , Guillain-Barre Syndrome/drug therapy , Guillain-Barre Syndrome/virology , Humans , Hydroxychloroquine/therapeutic use , Immunoglobulins, Intravenous/therapeutic use , Interleukin-6/blood , Interleukin-8/blood , Lopinavir/therapeutic use , Male , Neural Conduction/drug effects , Peripheral Nervous System/drug effects , Peripheral Nervous System/pathology , Peripheral Nervous System/virology , Prognosis , Respiratory Insufficiency/cerebrospinal fluid , Respiratory Insufficiency/drug therapy , Respiratory Insufficiency/virology , Ritonavir/therapeutic use , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL